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In this paper, we present a new fast Fourier transform (FFT) algorithm to reduce the table size of twiddle factors
required in pipelined FFT processing. The proposed algorithm can reduce the table size to half, compared to
the radix-22 algorithm, while retaining the simple structure. In addition, a new dynamic data scaling approach is
presented to reduce hardware complexity without degrading signal-to-quantization-noise ratio (SQNR). To verify
the proposed algorithm, a 2048-point pipelined FFT processor is designed using a 0.18 �m CMOS process.
By combining the proposed algorithm and the radix-22 algorithm, the table size is reduced to 35% and 53%
compared to the radix-2 and radix-22 algorithms, respectively. The FFT processor occupies 1.95 mm2 and
achieves SQNR of more than 55 dB without increasing the internal wordlength progressively using the proposed
dynamic data scaling.
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1. INTRODUCTION
The fast Fourier transform (FFT) is a major signal processing
block being widely used in communication systems, especially
in orthogonal frequency division multiplexing (OFDM) systems
such as digital video broadcasting, digital subscriber line and
WiMAX (IEEE 802.16). As such a system requires large-point
FFT computation for multiple carrier modulation, usually more
than 1024 points, it is desirable to reduce computational com-
plexity as well as hardware complexity.

To reduce the computational complexity, various FFT algo-
rithms have been proposed such as radix-22, radix-23 as well as
radix-2 and radix-4 algorithms.1�2 Although the previous algo-
rithms could reduce the computational hardware resources such
as multipliers and adders, they did not seriously take into account
the number of twiddle factors to be stored into tables. In the
implementation of a large-point FFT processor, however, the
tables become large enough to occupy significant area and power
consumption.3 In this paper, a new FFT algorithm is proposed
to overcome the problem of the large table requirement, which
not only reduces the table size by a factor of two compared to
radix-22 algorithm but also retains the simple structure of radix-2
algorithm. Since additional computations incurred by applying
the proposed algorithm can be implemented with a few adders,

∗Author to whom correspondence should be addressed.

the overall computational complexity is almost the same as that
of radix-22 algorithm.

When a fixed-point representation is employed to implement
a FFT processor, the wordlength has a significant influence on
the accuracy and dynamic range. Although a long wordlength
is required to achieve high signal-to-quantization-noise ratio
(SQNR), it results in a large hardware complexity as the word
sizes of memories and computational units such as complex mul-
tipliers and complex adders should be increased in proportion to
the wordlength.4 An efficient dynamic data scaling technique is
also presented in this paper to lower the hardware complexity
without degrading SQNR.

2. PROPOSED FFT ALGORITHM
The proposed algorithm can be derived by applying the Cooley
and Tukey radix-2 decimation-in-frequency (DIF) decomposition
two times.5 The N -point Discrete Fourier Transform (DFT) of a
sequence x�n� is defined as

X�k�=
N−1∑
n=0

x�n�Wkn
N � 0≤ k < N (1)

where x�n� and X�k� are complex numbers. The twiddle factor
is defined as follows.

Wkn
N = e−j�2�kn/N� = cos

(
2�kn

N

)
− j sin

(
2�kn

N

)
(2)
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The two decompositions can be expressed if n and k are replaced
with 3-dimensional linear index maps shown below.

n= N

2
n1+

N

4
n2+n2

k = k1+2k2 +4k3

(3)

Using the above index maps, Eq. (1) can be rewritten as

X�k� = X�k1+2k2+4k3�

=
N/4−1∑
n3=0

1∑
n2=0

1∑
n1=0

x

(
N

2
n1+ N

4
n2+n3

)

×W
��N/2�n1+�N/4�n2+n3��k1+2k2+4k3�
N

=
N/4−1∑
n3=0

1∑
n2=0

{
B

(
N

4
n2+n3� k1

)
W

��N/4�n2+n3�k1
N

}

×W
��N/4�n2+n3��2k2+4k3�
N (4)

where B�·� represents the following butterfly structure.

B

(
N

4
n2+n3� k1

)

= x

(
N

4
n2+n3

)
+ �−1�k1x

(
N

4
n2+n3 +

N

2

)
(5)

The main idea of the proposed algorithm is to take into account
the value of n3 in the summation of n2. For even n3�= 2m�, the
sum is arranged as follows.

1∑
n2=0

{
B

(
N

4
n2+n3� k1

)
W

��N/4�n2+n3�k1
N

}

×W
��N/4�n2+n3��2k2+4k3�
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=
{
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n3+

N

4
� k1

)}

×W
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N W

4n3k3
N (6)
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Fig. 1. Signal flow graphs of 16-point FFT. (a) Radix-22 algorithm and (b) proposed algorithm.

If n3 is odd (= 2m+1), the sum becomes

1∑
n2=0

{
B
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N
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where m is an integer between 0 and N/8−1.
By substituting Eqs. (6) and (7) to Eq. (4), we obtain the fol-

lowing expression.

X�k� = X�k1+2k2 +4k3�

=
N/4−1∑
n3=0

�H�k1� k2�n3�W
2m�k1+2k2�
N �W

4n3k3
N

︸ ︷︷ ︸
N

4
−pointDFT

(8)

In (8), the expression of H�·� also depends on the value of n3.
For even n3, H�·� is expressed as

H�k1� k2�n3�= B�n3� k1�+ �−1�k2 �−j�k1B

(
n3+ N

4
� k1

)
(9)

If n3 is odd, then H�·� is arranged below.

H�k1� k2�n3� =
[
W

k1
N B�n3� k1�+ �−1�k2 �−j�k1W

k1
N B

×
(
n3+ N

4
� k1

)]
·W 2k2

N (10)

As k1 is either 0 or 1, Eq. (9) indicates that the butterfly has
a trivial multiplication of −j at the input side if n3 is even,
and Eq. (10) implies that an additional constant multiplication
of W 1

N is required at the input side if n3 is odd. By performing
the constant multiplications at the input side, all the exponents
in the twiddle factors W

2m�k1+2k2�
N and W

2k2
N ·W 2m�k1+2k2�

N to be
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multiplied in Eq. (8) become even values, while the exponents
of the twiddle factors in other FFT algorithms such as radix-2,
radix-22, and radix-23 have both even and odd values. Compared
to the radix-22 algorithm, the proposed algorithm associated with
only even exponents reduces the size of twiddle factor table by
half at the cost of an additional constant multiplier per two stages,
as shown in Figure 1 that illuminates the signal flow graphs of
16-point FFT corresponding to the radix-22 algorithm and the
proposed algorithm.

3. DYNAMIC DATA SCALING
As a butterfly contains an adder and a subtractor, one bit should
be increased in the result to avoid overflow, increasing the hard-
ware complexity of memories and computational units. The sim-
plest way to avoid the increase of the internal wordlength is
to scale down the output value of each stage to half. If all the
internal wordlengths are set to the wordlength of input, however,
the resulting SQNR is very low because of severe information
loss. To achieve a SQNR enough to meet the standard specifica-
tion, therefore, this approach needs an internal wordlength that
is much longer than the input wordlength, increasing the overall
hardware complexity significantly.

Another data scaling approach is to dynamically scale the
internal wordlength. One of the approaches is the block float-
ing point (BFP) method.6 When a pipelined architecture is used,
however, the BFP method is not suitable because of its huge
latency to normalize all outputs from a certain stage. Instead, a
method called convergent block floating point (CBFP) has been
proposed for pipelined architectures.7 As shown in Figure 2,
the CBFP method also suffers from large memory overhead and
increased latency caused by the intermediate buffer as well as
complex normalization. Furthermore, the intermediate buffer in
the CBFP logic has to store full-precision values because the nor-
malization can be performed after the scaling factor is known.8

Although a data scaling method that does not need additional
buffers and latency has been proposed, it still requires the com-
plex normalization that should be implemented with a number of
compare and shift units connected in series at the output of each
stage.9

The proposed data scaling technique is based on an observation
that there is no need to scale down the internal value if overflow
does not occur in computing the value. Even if overflow occurs,
scaling down to half, which can be achieved by a simple opera-
tion of 1-bit right shift, is all to accommodate the overflow. Based
on this observation, we present an efficient dynamic scaling tech-
nique. The main idea of the proposed algorithm is to condition-
ally scale down the output value of a complex multiplication if
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Fig. 2. CBFP logic in a pipeline stage.
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Fig. 3. Proposed dynamic scaling technique. (a) Dynamic scaling. (b) Over-
flow detection.

overflow occurs in the computation, and tagging this information
on the internal word. We examine the output value of a complex
multiply unit to check whether it can be represented in n bits or
not as shown in Figure 3(a). The overflow can be easily detected
by performing an Exclusive-OR operation for two most signif-
icant bits (MSBs) shown in Figure 3(b). If overflow occurs in
either the real value or the imaginary value, both the real value
and the imaginary value is scaling down to half, which leads to
less hardware complexity.

The internal word format of the proposed dynamic scaling
method is shown in Figure 4(a). The data field in the inter-
nal word format is to represent the scaled data value, and the
tag field is to indicate how many times the scalings are applied
from the original input values to generate the corresponding data.
If the proposed data scaling method is applied to the L-th stage,
at most �log2L� bits are enough for the tag field. Therefore,
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Fig. 4. Proposed processing unit. (a) Internal word format. (b) Tag process-
ing. (c) Data processing.
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the number of bits in the tag field increases gradually in log
scale.

In general, the two data words participating in a but-
terfly computation have different tag values. As shown in
Figures 4(b and c), the difference of the two tag values is cal-
culated first, and then one data word with the smaller scale is
shifted by the difference to make the scales of two data words
equal. The tag value of the output word of a butterfly computa-
tion is initially set to the larger tag of the two input words. After
the complex multiplication is completed, the output tag value is
increased by one if overflow is detected.

At the final pipeline stage of N -point FFT, each output has
the different tag value in general because each value experiences
a different number of scalings. To obtain appropriate precision,
the output is scaled up by the amount of the corresponding tag
value. As the proposed conditional scaling technique makes the
internal wordlength short, it leads to a lower hardware complexity
without severe information loss.

4. PROPOSED 2048-POINT PIPELINED FFT
In pipelined DIF FFT processing, the twiddle factor table is
largest at the first stage and reduced by a factor of two at the
successive stages. Reducing the table sizes at the first several
stages can be significant because the original table sizes are large
enough to pay off the additional constant multipliers. The reduc-
tion is not considerable, however, at the latter stages. At each
pipeline stage, we have to decide whether to apply the proposed
algorithm or not with considering both the cost of the additional
constant multiplier and the table size reducible by the proposed
algorithm. When the cost of the additional constant multiplier is
not compensated by the table reduction at a certain stage, the
radix-22 algorithm should be applied from that stage to the last
stage.

By combining the proposed algorithm with radix-22 algo-
rithm, we designed a 2048-point pipelined FFT processor of
which Single-path Delay Feedback (SDF) structure is shown
in Figure 5.1 The overall table size can be reduced to almost
half, compared to the structure that uses only radix-22 algorithm,
by applying the proposed algorithm to the first four stages. In
this case, two constant multipliers are required to compute non-
trivial multiplications by W 1

2048 and W 1
512. In implementing the

2048-point FFT processor, the wordlength of the twiddle factors
is set to 12 bits by performing several simulations. The longer
twiddle factors are not cost efficient, as the SQNR performance
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Fig. 5. SDF pipeline architecture of the proposed 2048-point FFT
processor.

Table I. Complexity of constant multipliers.

Constant operand MSD representation

cos�2�/2048� 1�000000000000
sin�2�/2048� 0�000000001100
cos�2�/512� 1�000000000000
sin�2�/512� 0�000000110010

is not increased notably but the costs of multipliers and tables
are increased significantly.4

The complexity of the constant multiplier depends on the num-
ber of non-zero bits in the binary representation of the con-
stant. To minimize the number of non-zero bits, the constants are
expressed in the minimal signed digit (MSD) representation, as
shown in Table I. Due to the sparse non-zero bits in the sine and
the cosine values, the constant multipliers can be implemented
with a few adders. By employing these two simple constant mul-
tipliers, we can reduce the required sizes of two largest tables to
half. As the two tables takes more than 75% of the total table
sizes required in the radix-22 algorithm, the reduction plays a sig-
nificant role in lowering the overall complexity of the 2048-point
FFT processor.

5. IMPLEMENTATIONS
We should the format of Sensor Letters. The hardware complex-
ities required in the proposed algorithm and the previous algo-
rithms are compared in Table II for the case of 2048-point FFT.
The required table size indicates the total number of entries of
the ROM tables. The �/2 symmetric property of the twiddle fac-
tors is considered in counting the table size. We can reduce the
table size further if we employ the �/4 symmetric property. As
the reduction ratio is independent of what symmetric property is
used, the reduction ratio shown in Table II also applies to the
case of �/4 symmetry. As indicated in Table II, the proposed
algorithm needs the minimal table size compared to other algo-
rithms and the overhead is just two constant multipliers which
can be implemented with a few adders.
Assuming that the input is represented in 12 bits, we com-

pare four scaling schemes shown in Table III. Table IV shows
that the internal wordlength configurations and SQNR perfor-
mances resulting from the scaling methods. If no scaling is used,
the wordlength is increased progressively, one bit per stage to

Table II. Hardware complexity comparison for 2048-point FFT.

FFT Constant General Required
algorithm multiplier multiplier table size

Radix-2 0 10 1023 (100%)
Radix-22 0 5 682 (66.7%)
Radix-23 3 4 584 (57.1%)
Proposed 2 5 362 (35.4%)

Table III. Scaling configurations.

Case Scaling method

I Always scaling-to-half
II No scaling+scaling-to-half
III Proposed dynamic scaling always
IV No scaling+proposed dynamic scaling
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Table IV. SQNR and internal wordlength of computational units.

Stage Number

Case 1 2 3 4 5 6 7 8 9 10 11 SQNR (dB)

I 12 12 12 12 12 12 12 12 12 12 12 18.9
II 12 13 14 15 16 17 18 19 19 19 19 56.1
III 12 12 12 12 12 12 12 12 12 12 12 51.2
IV 12 13 13 13 13 13 13 13 13 13 13 55.8

Table V. Memory requirement for 2048-point FFT.

Scaling FIFO memory Intermediate
method requirement buffer requirement

Convergent block floating point
(CBFP)

2047 2046

Proposed dynamic scaling 2047 0

avoid overflow. On the contrary, both the proposed dynamic scal-
ing technique and the scaling-to-half method maintain the inter-
nal wordlengths constant. As denoted in Table IV, the proposed
dynamic scaling technique (case III) can improve SQNR impres-
sively, about 30 dB improvement, compared to the scaling-to-half
method (case I) although those two configurations have similar
hardware complexity. If the first stage is allowed to extend one
bit as in case IV, we can obtain a SQNR performance of more
than 55 dB using the proposed dynamic scaling technique. To
achieve a SQNR of more than 55 dB by progressively increasing
the internal wordlength, the wordlength should be lengthened to
19 bits, leading to huge hardware complexity at the latter stages
as in case II.

Compared to the CBFP method that requires additional buffers
to store a group of values to be normalized, the proposed
dynamic scaling method requires less memory as well as less
computational delay. Table V shows memory sizes required to
process 2048-point FFT. The memory requirement indicates the
total sizes of FIFO memories and intermediate buffers. The mem-
ory overhead resulting from the CBFP method is enormous, as
the full-precision values should be stored in intermediate buffers
and the size of the buffers is comparable with that of the FIFO
memories. In addition, the latency is also increased considerably
by the intermediate buffers.

We designed a 2048-point pipelined FFT processor using
a 0.18 �m 4-Metal CMOS process. The internal wordlengths
are configured as indicated in case IV in Table III. The pro-
posed FFT processor occupies 1.95 mm2 and the gate count is
75,809 excluding memories and ROMs. The FIFO buffers are

implemented using RAM memories, and small-sized RAM and
ROM memories are replaced with registers and logic circuitry,
respectively.

6. CONCLUSIONS
We should the format of Sensor Letters. We have proposed a new
FFT algorithm to reduce the size of twiddle factor tables and
an efficient dynamic scaling method to lower overall hardware
complexity in the implementation of large-point pipelined FFT
processors. By applying the proposed FFT algorithm to the first
several stages, the table size required in pipelined FFT process-
ing is reduced approximately by half at the cost of a few simple
constant multipliers compared to the radix-22 algorithm. Since
the constant multipliers can be implemented by a few adders,
the proposed algorithm is efficient in large-point FFT computa-
tion, especially in terms of area and power consumption. Based
on the proposed FFT algorithm, we can design a 2048-point
pipelined FFT processor that reduces the total size of twiddle fac-
tor tables to 35% and 53% compared to the radix-2 and radix-22

algorithms, respectively. In addition, the proposed dynamic scal-
ing technique enables the proposed processor to achieve SQNR
of more than 55 dB without increasing the internal wordlength
progressively.
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